9713

Reg. No.:

Name:

Third Semester B.Tech. Degree Examination, January 2016 (2013 Scheme) 13.306: DIGITAL ELECTRONICS (T)

Time: 3 Hours

Max. Marks: 100

PART-A

Answer all questions. Each question carries 2 marks.

- 1. Find the compliment of $\left[(a\overline{b} + c)\overline{d} + e \right]$.
- 2. What is a full adder?
- 3. Draw the internal architecture of IC 7492.
- 4. Differentiate between Max term and Min term.
- 5. Differentiate between Latches and Flip Flops.
- 6. Show how SR flip flop can be converted into JK flip flop.
- 7. Write down the characteristic equation of JK flip flop.
- 8. Explain the working of a static RAM cell.
- 9. What do you mean by noise margin of a logic family?
- 10. Draw the circuit of a 2 input CMOS NAND gate.

 $(10\times2=20 \text{ Marks})$

PART-B

Answer any one question from each Module. Each full question carries 20 marks.

Module - I

11. a) Implement the expression using a 8 : 1 MUX $f(a, b, c, d) = \sum_{m} (0, 2, 3, 6, 8, 9, 12, 14)$.

6

b) Using Quine-McCluskey method simplify the logic expression $f(a, b, c, d) = \sum m(1, 3, 5, 8, 9, 11, 15) + d(2, 13)$.

14

12. a) Prove the universal property of NAND gate.

b) Find the SOP and POS expression for

f (s, b, c, d) =
$$(a+b+c+d)(a+b+c+d)(a+b+c+d)$$

 $(a+b+c+d)(a+b+c+d)(a+b+c+d)$

c) Write a note on BCD to seven segment decoder.

Module - II

13. a) Design a synchronous self starting counter to count the sequence 1, 3, 5, 7, 9, 11, 13, 15, 1, 3,..... using JK flip flops.

14

b) Design an astable multi vibrator for a frequency of 1.2 KHz using 555 IC.

14. a) Design a flip flop with inputs A_n and B_n using T flip flop. The truth table of $A_n - B_n$ is

A _n	B	Q _{n+1}
1	1	Qn
0	0	\overline{Q}_n
0	1.	1
1	0	0

12

b) Design a monostable multivibrator for a pulse width of 1 ms using 555 IC.

Module - III

- 15. a) Design a sequence detector to detect the sequence 1011 in a stream of bits. 15

b) Draw Moore and Mealy notation of a JK flip flop.

5

16. A sequential circuit has an input X and an output Z such that, the output is same as the input was two clock cycles before. For example.

X = 0101101011010001

Z = 0 0 0 1 0 1 1 0 1 0 1 1 0 1 0 0

The first two values of Z are 0. Find a mealy state graph and table for the circuit.

Module-IV

17. a) Explain the interfacing of TTL and CMOS.

8

- b) Write short notes on:
 - i) RAM
 - ii) ROM
 - iii) PROM
 - iv) EPROM.

(4×3=12 Marks)

18. a) Explain the working of a dynamic RAM cell and give the advantages and disadvantages.

10

b) Write the VHDL codes for a half adder and a 4bit up counter.

10

